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An objective of future Mars missions involves emplacing a seismic

network on Mars to determine the internal structure of the planet. An

argument based on the relative geologic histories of the terrestrial planets

suggests that Mars should be seismically more active than the Moon, but less

active than the Earth (e.g., 1). Although the Viking 2 seismometer failed to

detect a marsquake, the poor sensitivity of the instrument (on the lander) does

not preclude Mars from being a seismically active planet (2). In addition,

calculations (1) indicate that stresses induced by cooling of the martian

lithosphere through time should give rise to marsquakes that exceed the

occurrence of high-frequency teleseisms on the Moon (28 events in 5 years)

thought to be similar to tectonic earthquakes (3). The seismic moment Mo, is

defined as, Mo=,SA, for slip (S) over a fault of area A, and rigidity ,. Therefore

measuring the slip across a fault of known or estimated area allows a

determination of the seismic moment, which can be related to the magnitude of

an equivalent earthquake, assuming an appropriate moment-magnitude

relationship. In this abstract, we estimate the seismicity expected on Mars

through time from slip on faults visible on the planet's surface. These estimates

of martian seismicity must be considered a lower limit as only structures

produced by shear faulting visible at the surface today are included (i.e., no

provision is made for buried structures or non-shear structures); in addition, the

estimate does not include seismic events that do not produce surface

displacement (e.g., activity associated with hidden faults, deep lithospheric

processes or volcanism) or events produced by tidal triggering or meteorite

impacts. Calibration of these estimates suggests that Mars may be many times

more seismically active than the Moon.

Tectonic features on Mars are preferentially found around the Tharsis

region, which covers the entire western hemisphere of Mars. Tharsis faults

formed mainly during two tectonic periods (4, 5), one during Late

Noachian/Early Hesperian and the other during Late Hesperian/Early
Amazonian. A recent review of martian structures (6) defines a number of

tectonic features that formed by shear faulting. The most common tectonic

feature is the simple graben, which is bounded by two inward dipping normal

faults with dips of about 60 ° (7). The widths of the structures and geometrical

considerations indicate that on average the bounding faults extend down dip

about 2.5 km, and have experienced 150 m of slip (8). We have estimated the

faulting on narrow grabens from a data set (9) that includes the locations and

lengths of all visible grabens (about 7000), about half of which formed during

each of the two tectonic periods. Larger grabens and rifts that involve more of

the lithosphere (proportional to their width) also are found on Mars, principally
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in Valles Marineris, Thaumasia, Tempe Terra, and Alba. Faults bounding the
Thaumasia graben, which formed during the Late Hesperian/Early Amazonian

period and canyons in Valles Marineris, which formed during both periods are

likely to extend through the entire brittle lithosphere, which is about 40 km thick

(6); slip was estimated from the observed topographic relief (4-8 km for Valles

Marineris; 1.5 km for the Thaumasia graben). Grabens at Alba and Tempe Terra

are narrower, probably involving the upper 5-10 km of the lithosphere. Grabens

at Alba formed mostly during the Early Amazonian and have experienced 0.2-0.5

km of slip. Tempe Terra rifts are about 0.5 km deep and formed in the Late

Noachian. Lengths of the faults were measured directly from surface maps.

Abundant compressional wrinkle ridges around Tharsis formed during

the Early Hesperian. Interpretations of the subsurface structure of ridges include

folds above reverse faults that extend a couple of kilometers deep (10). We

applied a recent model (11) that infers subsurface thrust faults dipping about 30 °

that extend 5 km down dip with about 150 m of slip to the lengths of about 2000

ridges around Tharsis (9). In addition, we measured the length and average

width (inferred depth) of Middle and Late Amazonian grabens, to derive fault

areas and slips for these two youngest time periods. Caldera collapse also was

included in the measurements of Late Amazonian activity, because a detailed

seismologic study (12) on Earth shows that it occurs by an equivalent shear

process, producing fairly large earthquakes. We measured the length of circular

caldera faults on the tops of Olympus, Ascraeus, Pavonis and Arsia Mons,

assumed the faults extend 10 km deep (13) and estimated slip from present relief

(14). We assumed a, of 1011 dyne/cm 2, based on likely properties of the outer

layers of Mars (4), to calculate the total accumulated moment for each of the 4

time periods discussed above.

The total moment in each time period was divided by its duration, based

on two crater/absolute age time scales (e.g., 15) to produce a plot of seismic

moment release per year (Mo/yr) through time. Mo/yr was greatest during Late

Noachian/Early Hesperian period of Tharsis deformation at 1.5-3.7x1023 dyne-

cm/yr, decreasing to 1x1023-5.1x1022 dyne-cm/yr during the Late Hesperian/Early

Amazonian Tharsis deformation period, and to 1.7x1022-4.7x1021 dyne-cm/yr

during the Middle and Late Amazonian periods. Mo/yr during the first two

periods is dominated by that contributed from Valles Marineris faults, which

have large slip, depth and length. The decrease in Mo/yr appears to follow an

exponential decay toward the present, which argues that Mars is nearly as

seismically active today as it has been for the entire Late Amazonian. The best

estimate for the present, inferred for the Late Amazonian, or the past 250 m.y. is

1.3x1022 dyne-cm/yr. Assuming a moment-frequency distribution (16) similar to

oceanic intraplate earthquakes allows determination of the number of

marsquakes of a given moment per year. Results suggest hundreds of

marsquakes of moment 1016 dyne-cm per year, about 1 marsquake of moment

1020 dyne-cm per year, and thousands of years between marsquakes of moment

1026 dyne-cm.
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On the Earth, seismic activity is distributed over a range of earthquake

magnitudes, described by the empirical relation log N = a-bm, where N is the

number of earthquakes larger than magnitude (m). The slope of the curve b is

0.9 for intraplate oceanic earthquakes (16). If we assume the largest marsquake is

equivalent to a magnitude 6 earthquake, based on the largest shallow

moonquake (17), the largest intraplate oceanic earthquake (18), and the smallest

teleseismic marsquake likely to have been detected by Viking 2 (2), and we

assume b = 0.9, we can calculate a distribution of marsquakes per year from

Mo/yr, assuming a moment-magnitude relationship of the form log Mo=A+Bm

(B=2.35; A=11.71 [body-wave] for intraplate oceanic earthquakes; 18). The most

likely present seismic moment release rate of 1.3x1022 dyne-cm/yr results in

recurrence intervals of 435, 55, 7, and 1 yrs for equivalent body-wave magnitude

5-6, 4-5, 34, and 2-3 earthquakes on Mars, respectively. (A number of factors

argue that an equivalent magnitude 4 earthquake on Mars would be similar in

detectability to a magnitude 5 earthquake on the Earth [1].) Whereas, 7 years

might be considered a long time to wait for an equivalent body-wave magnitude

3-4 earthquake on Mars, it must be remembered that these estimates are likely

minima. For example on Earth, substantially more earthquakes occur without

surface breaks than those that do produce faulting at the surface. If there are 100

earthquakes of a given magnitude without surface breakage for each earthquake

with surface breakage, then these estimates predict about 2, 15, and 115

equivalent body-wave magnitude 4-5, 3-4, and 2-3 per year, respectively, on Mars

at present. By way of calibration, we extrapolated the total moment release on

the Moon at present from all observed grabens, which formed from 3.8-3.6 b.y.

and mare wrinkle ridges, which formed from 3.6-3.0 b.y.; results predict a rate of

moment release about 1000 times below that observed (1022 dyne-cm/yr [17, 20]).

If our estimates for Mars are similarly low, then Mars could have of order 100

marsquakes of equivalent 3-6 Earth magnitude per year (about 2 per year of

magnitude 5-6), which presents a promising prospect for future missions to

Mars. These calculations predict a present day moment release for Mars of about

1025 dyne-cm/yr, which agrees with theoretical lithospheric cooling calculations

for Mars (1, 19) and is midway between the total moment release (20) for the

Moon (1022 dyne-cm/yr) and the Earth (1029 dyne-cm/yr) as would be expected.

References: (1) Solomon, Phillips, Okal et al. 1991 Mars Seis Not Wkshp Rpt. (2)
Anderson ctal. 1977 JGR 82, 4524, Goins & Lazarcwicz 1979 GRL 6, 368. (3) Nakamura et
al. 1979 PLPSC 10th 2299, Nakamura 1980 PLPSC llth 1847. (4) Tanaka, Golombck &
Bancrdt 1991 sub JGR. (5) Scott and Dohm 1990 PLPSC 20th, 487. (6) Bancrdt, Golombck

& Tanaka 1991 "Stress and Tectonics on Mars", UA, M_s (7) Davis & Golombck 1990 JGR
95, 14231. (8) Tanaka & Davis 1988 JGR 93, 14893. (9) Wattcrs& Maxwell 1983 Icarus 56,
278. (10) Plcscia & Golombck 1986 GSA Bull "/9, 1289, Watters 1988 JGR 93, 10236. (11)

Golombck ct al. 1991 PLPSC 21st. (12) Filson et al. 1973 JGR "/8, 8591. (13) Zubcr &
Mouginis-Mark 1990 NASA TM 4210, 389, Thomas ct al. 1990 JGR 95, 14345. (14)
Mouginis-Mark 1981 PLPSC 12th 1431, Pike 19"/8 PLPSC 9th 3239. (15) Tanaka 1986
PLPSC l'/th E139. (16) Bcrgman & Solomon 1980 JGR 85, 5389 and pcrs. com. 1991. (17)
Obcrst 1987 JGR 92, 1397. (18) Bergman 1986 Tectonophys 132, 1. (19) Phillips & Grimm
1991 LPSci XXII 1061. (20) Goins et al. 1981 JGR 86, 378.

84


